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Communicated by D. Schwalm

Abstract. The evolution of the structure of the gamma-vibrational band head 2+
γ in well-deformed rare-

earth nuclei is studied within the framework of RPA calculations using a quasiboson approximation based
on the Nilsson model. The obtained evolution of the quasiparticle structure of the gamma-vibrational band
head is shown to correlate well with the evolution of the same nuclei within the IBA symmetry triangle
when described in the extended consistent-Q formalism. An empirical relation is presented that links the
IBA parameter χ with the quasiparticle structure of the gamma-vibrational band head.

PACS. 21.10.Re Collective levels – 27.60.+j 90 ≤ A ≤ 149 – 21.60.Jz Hartree-Fock and random-phase
approximations – 21.60.Fw Models based on group theory

1 Introduction

The Nilsson deformed shell model [1] has been the bench-
mark for the understanding of the single-particle structure
in well-deformed nuclei. In particular, the Nilsson model
has been the basis for the study of the response of the nu-
clear many-body system to rotations. On the other hand,
the evolution of collective degrees of freedom has been ex-
tensively studied with calculations in the framework of the
interacting boson approximation (IBA) [2].

Recently, the extended consistent-Q formalism
(ECQF) of the IBA [3] was used to map the structural
evolution of deformed rare-earth Gd, Dy, Er, Yb, and Hf
isotopes [4] within the IBA symmetry triangle [5]. It was
found that towards mid-shell the Gd, Dy, and Er isotopes,
while being well-deformed rotors, show a tendency of
being less gamma-rigid, while the Yb and Hf isotopes
become more gamma-rigid towards mid-shell. This work
was followed by similar studies for the transitional W,
Pt, and Os isotopes [6,7].

It is the purpose of this paper to provide some insight
into the particular features of those IBA trajectories for
the well-deformed rare-earth nuclei. We will show that for
these nuclei the different structural evolution can be un-
derstood on the basis of some basic features of the quasi-
particle structure of the gamma-vibrational band.

a e-mail: Reiner.Kruecken@ph.tum.de

The two-quasiparticle structure of the γ-vibrational 2+γ
state for well-deformed stable even-even rare-earth nuclei
has previously been calculated by Bès et al. [8] on the
basis of a quasiboson approximation using quasiparticles
constructed from single-particle energies and wave func-
tions from the Nilsson model. The quasiparticle Hamil-
tonian for the description of the 2+γ state contained the
|K| = 2 quadrupole interaction as well as the Coriolis in-
teraction, which has been shown to be most important for
an accurate description of transition probabilities.

Another well-known approach for the description
of low-lying non-rotational states in strongly deformed
even-even nuclei in the rare-earth region has been the
quasiparticle-phonon model by Soloviev [9–11]. The model
was applied to 156,158,160Gd, 160,162,164Dy, 166,168Er [12],
as well as 172Yb [13]. In these calculations it was shown
that the 2+γ state in all these nuclei is to more than 90%
a one-phonon excitation of multipole order λµ = 22. The
most significant two-quasiparticle components have been
listed in refs. [12,13].

Since those previous studies have not been carried
out for all the nuclei investigated within the IBA study
of ref. [4], we have performed a systematic investigation
based on the concept used in ref. [8], a simple RPA ap-
proach on the basis of a quasiboson approximation. Since
we are only interested in the evolution of the major two-
quasiparticle components in the wave functions of the 2+γ
states that are related to the gamma degree of freedom,
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we will neglect Coriolis mixing as well as other interaction
components that were taken into account in refs. [8,12,13].
While our results will therefore certainly not provide the
best description of the detailed single-particle structure
of these nuclei, they will nevertheless allow us to repro-
duce main features that are relevant to understand the
structural evolution with respect to the gamma-softness
observed in the IBA study of ref. [4].

The paper is organized in the following way. We first
briefly review the basic ingredients of the quasiboson
model that is based on the formalism of the random-
phase approximation. Thereafter, the resulting quasipar-
ticle components of the wave function of the 2+γ states in
the nuclei of interest are discussed and compared to previ-
ous calculations. In a next step, the distributions of two-
quasiparticle components are quantified allowing to distin-
guish if a gamma-vibrational state contains only few major
or many small two-quasiparticle components, respectively.
Afterwards, an overview of the previous IBA results and
their relation to the stiffness of the collective potential in
gamma-direction is given. The results for the quasiparticle
distributions and the IBA results motivate the definition
of a single new quantity, the gamma structure function.
We will provide arguments that this quantity should be
related to the stiffness of the collective potential in the
gamma-direction and that it shows a qualitative correla-
tion with the IBA results. In a final step we introduce
an empirical analytic relation that connects this gamma
structure function with the position of a specific nucleus
in the symmetry triangle of the IBA.

2 The model

We use a simple calculation based on the formalism of
the random-phase approximation (RPA) (see, e.g. [14])
in which we assume that the wave function of the γ-
vibrational 2+γ state is made up completely of coherent
two-quasiparticle excitations from the ground state by
means of the Q2±2 = r2Y2±2 operator.

The Q2±2 operator connects Nilsson single-particle
statesKπ[NnzΛ], withK = Λ+Σ = Λ±1/2 that obey the
selection rule ∆N = 0,±2, ∆nz = 0, ∆Σ = 0, ∆K = ±2,
∆Λ = ±2, and ∆π = +1, where N is the principal quan-
tum number denoting the major shell, nz the number of
nodes in the z-direction (along the symmetry axis of the
deformed potential), Λ the component of the orbital an-
gular momentum along the z-axis, and Σ the projection
of the intrinsic nucleon spin onto the z-axis.

Within the straightforward RPA approach incorporat-
ing the quasiboson approximation we determine the so-
called forward and backward amplitudes xmi and ymi, re-
spectively, of those Nilsson states m and i which are con-
nected by the selection rules of the quadrupole operator
and which are making up the collective wave function

|c〉 =
∑

mi

(

xmia
†
ma

†
i |0〉 − ymiamai|0〉

)

. (1)

The value of the square of the forward amplitude minus
the square of the backward amplitude considered sepa-

rately for each contributing orbital combination is an in-
dicator for the relevance of those states in the wave func-
tion. Of course the sum over all these values is normalized
to one, i.e.

∑

mi

Cmi =
∑

mi

(

|xmi|2 − |ymi|2
)

= 1. (2)

The matrix elements between the relevant states have
been evaluated using the analytically determined wave
functions which are solutions to the anisotropic three-
dimensional harmonic-oscillator potential [15]. In the limit
of large deformations these solutions are exactly valid. In
dealing with medium deformed nuclei with β ≈ 0.3 linear
combinations of these wave functions have to be consid-
ered. However, one component of the linear combination
is always much larger than any of the rest indicating an
almost pure state. In the present calculation it is there-
fore a reasonable approximation to work with the exact
solutions for large deformations.

The pairing residual interaction is included both by
modifying the interaction matrix elements with the well-
known BCS emptiness and fullness factors (Ui, Vi) and by
transforming the Nilsson single-particle energies to quasi-
particle energy levels. The generalized Fermi energy used
in the BCS theory is approximated by the Fermi energy
determined by the highest occupied level in the Nilsson
model neglecting pairing correlations. The pairing gaps
are extracted from the experimental one-nucleon separa-
tion energies of adjacent nuclei.

The model was applied to the well-deformed rare-earth
nuclei with R4/2 = E(4+1 )/E(2+1 ) > 2.9. This selection in-

cludes the nuclei near the phase/shape transition 152Sm,
154Gd, 156Dy, and 162Yb, where the results should be
taken with some caution, in particular, since large fluctu-
ations in the deformation parameter β are to be expected,
making the assignment of the two-quasiparticle structure
of the involved states less reliable. Nevertheless, the re-
sults for these nuclei are helpful in following the trends
for the isotopic chains.

In order to determine the relevant quasiparticle con-
tributions we evaluated the Nilsson single-particle ener-
gies at the experimentally known quadrupole deformation
parameters [16] and use the tabulated values for the one-
nucleon separation energies [17] for the determination of
the pairing energies.

It should be emphasized that the well-deformed rare-
earth nuclei, which we considered in this work, are with-
out exception in good approximation axially symmetric
in their ground states [18] and the minimum of the total
energy surface is located at γ = 0◦. For the description of
the properties of these well-deformed nuclei it is therefore
a good approximation to consider only axially symmetric
shapes [19]. Thus, in order to determine the energies and
wave functions of the single-particle states upon which
the gamma-vibration is built, we only considered the ex-
perimentally known quadrupole deformation parameter β
for the ground state of each nucleus [16] and fixed the
asymmetry parameter γ at a value of zero. This proce-
dure was also applied by Bès et al. [8] in their work and in
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Fig. 1. Most relevant squared amplitudes of two-quasiparticle
states contributing to the 2+

γ state in the well-deformed even-
even Sm and Gd isotopes. The diameter of the circles repre-
sents the probability with which each two-quasiparticle state
contributes to the total wave function. A scale is plotted to
make it possible to estimate the total contribution of the state
to the wave function in percent.

the quasiparticle-phonon model by Soloviev [9–11] only an
axisymmetric potential is considered for the calculation of
vibrational states.

Of course the potential is not infinitely steep and zero-
point motion leads to a finite but small γeff ≈ 0◦–10◦,
which depends on the stiffness of the potential leading to
highly excited 2+γ states for a very stiff potential and lower
excitation energy for less stiffness. It should be pointed out
that all nuclei under consideration show rather gamma-
rigid potentials, however with some variation in the stiff-
ness. It is exactly this variation of the stiffness that our
results will relate to.

The well-known RPA equations (see, e.g. [14]) lead to
a dispersion relation. This relation contains all relevant in-
formation about the structure (quasiparticle energies, ma-
trix elements) of the nucleus. The usual way to obtain the
collective wave function is to determine the energy eigen-
values from this dispersion relation and then use the lowest
solution as input to calculate the forward and backward
amplitudes. However, the value (strength) of the coupling
constant of the quadrupole interaction, which is necessary

Fig. 2. Same as fig. 1 for Dy and Er isotopes.

to fix the solution, cannot be derived from theory. In the
paper by Bès et al. [8] an average fit value for the coupling
constant was chosen to reasonably reproduce experimen-
tal excitation energies of the 2+γ states in the rare-earth
region. Hernández et al. [20] considered in their approach
for each nucleus a different coupling constant in order to
exactly reproduce the experimental energy when they cal-
culated reduced transition probabilities. This latter pro-
cedure is equivalent to using the experimental excitation
energies of the 2+γ states directly to determine the ampli-
tudes, resulting in a rather small variation of the coupling
constant among the rare-earth nuclei under consideration.
Since the experimental energy of the 2+γ state is unknown

for 158,160Sm we have used the coupling constant obtained
for 156Sm in order to calculate the energy and composition
of their 2+γ states.

Finally, we obtain the following relation for the
squares of the amplitudes Cπ,ν

mi (π and ν denote the pro-
ton and neutron contributions, respectively) of the two-
quasiparticle states m, i in the wave function of the γ-
vibration:

Cπ,ν
mi ∝

∣

∣〈m|r2Y2±2|i〉
∣

∣

2 · (UmVi + UiVm)
2

·
[

(Eγ − (Em + Ei))
−2 − (Eγ + (Em + Ei))

−2
]

. (3)

Due to the fact that we neglect Coriolis and other inter-
action components [8,12] the calculated electromagnetic
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Fig. 3. Same as fig. 1 for Yb and Hf isotopes.

transition matrix elements (not presented here) do not re-
produce the experimental trends. The E2 matrix element
is very sensitive to the many small components of the wave
function, which depend on those extra interaction terms.
However, the order of magnitude of the E2 matrix ele-
ments is reproduced in our calculations, indeed showing
the collective character of the 2+γ states.

3 Results

3.1 Major components of the wave function

Figures 1-3 show the most relevant wave function compo-
nents contributing to the 2+γ wave function in the well-
deformed Sm, Dy, Gd, Er, Yb, and Hf isotopes. The di-
ameter of the circles indicates the probabilty of each two-
quasiparticle wave function component with respect to the
total wave function. We assume here that the wave func-
tion of the 2+γ state is completely described by those wave
function components. This rather crude assumption seems
to be justified when comparing our results to those by Bès
et al. [8], which are shown in fig. 4 for 156,158,160Gd and
in fig. 5 for 160,162,164Dy. For those nuclei also calcula-
tions by Soloviev et al. [12] have been performed, which
are also shown in the figures for comparison. Overall, one
can see reasonable agreement with both previous calcula-
tions, although the admixture of two-quasiparticle states

Fig. 4. Comparison of the strongest two-quasiparticle com-
ponents in the wave function of the 2+

γ state (in percent) in
156,158,160Gd in the calculations from this work with those by
Bès et al. [8] and by Soloviev et al. [12].

Fig. 5. Comparison of the strongest two-quasiparticle com-
ponents in the wave function of the 2+

γ state (in percent) in
160,162,164Dy in the calculations from this work with those by
Bès et al. [8] and by Soloviev et al. [12].

that cannot be connected by the Y22 operator is in some
cases significant, in particular in the calculation for 156Gd
by Soloviev et al. [12]. However, the agreement seems suf-
ficiently good to give confidence to our schematic calcula-
tion, that primarily aims to investigate the trends in the
contributions of those two-quasiparticle states that can be
connected by the Y22 operator and therefore should pro-
vide information on trends in the gamma-rigidity of these
nuclei.

It is apparent in figs. 1-5 that in most cases only a
few quasiparticle configurations for protons and neutrons
dominate the wave function of the 2+γ state. This is ob-
served not only in our calculations but also in those per-
formed by Bès et al. [8] and Soloviev et al. [12]. These
long known results seem to be contradicting the notion
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of the 2+γ state being a collective excitation. Neverthe-
less, the calculations are in general agreement with the re-
sults of experimental investigations (see, e.g. [13]). At the
same time the experimental B(E2)-values for the tran-
sition from the 2+γ to the ground state show collective
character. In this context it has to be repeated that also
the smaller quasiparticle contributions, which all add up
coherently, do play an important role for the collectivity
of the transition strength. At the same time the calcula-
tions consistently show that the gamma-vibrational state
always carries several dominant quasiparticle components.

3.2 The distribution functions Sν , Sπ

We now want to use the obtained results to evaluate
and quantify the distribution of different two-quasiparticle
contributions to the wave function of the γ-vibrational 2+γ
states of the nuclei under consideration. These results will
in turn be used for a comparison to the structural evolu-
tion of these deformed nuclei within the symmetry triangle
of the IBA [4,6,7].

We take into account all squared amplitudes Cmi that
are larger than 0.001 and label them as Cπ,ν

(h) for protons

and neutrons, respectively, in arbitrary order with inte-
ger numbers h = 1, 2, . . . , j, where j is the number of
two–quasi-proton/neutron states contributing to the 2+γ
states with squared amplitudes above the cut-off value.
Therefore we construct a distribution function Sν(j) for
the neutrons in the following way:

Sν(j) =

∑j
h=1

∑j
l=1 |Cν

(h) − Cν
(l)|

2 · (j − 1) ·
(

∑j
h=1 C

ν
(h)

) . (4)

In the same way we construct a distribution function
Sπ(k) for the k proton contributions above the cut-off
limit,

Sπ(k) =

∑k
h=1

∑k
l=1 |Cπ

(h) − Cπ
(l)|

2 · (k − 1) ·
(

∑k
h=1 C

π
(h)

) . (5)

As one can easily verify, the distribution functions
Sη=ν,π can have values between 0 and 1. For the case that
exactly one two-quasiparticle excitation contributes to the
2+γ wave function one obtains Sη(j) = 1, while Sη(j) = 0 is
reached in the case that all j two-quasiparticle excitations
contribute exactly with the same squared amplitudes.

In the forthcoming discussion we want to compare the
distribution functions for different nuclei for which the
numbers of squared amplitudes above the cut-off value
may be different. Therefore a straightforward normaliza-
tion to the number of relevant wave function components
has been applied. From now on we will call these normal-
ized distribution functions Sπ and Sν , respectively.

Besides the distribution functions Sπ and Sν we can,
within the framework of our model, also determine the
fractions fπ =

∑

Cπ
(h) and fν =

∑

Cν
(h) of the contri-

bution of proton and neutron quasiparticles to the wave
function of the 2+γ state.

ν

π

ν

Fig. 6. Distribution functions Sν and Sπ for neutrons and
protons, respectively, as a function of neutron number for well-
deformed even-even Sm (top left), Gd (top right), Dy (bottom
right), and Er (bottom left) isotopes together with the fraction
fν of neutrons in the wave function of the 2+

γ state (see text
for details). For 158,160Sm we have used the same quadrupole
coupling strength as in 156Sm in order to determine the energy
of the 2+

γ state. Therefore the results are indicated by dashed
lines.

Figures 6-7 show the distribution functions Sπ, Sν , as
well as the fraction fν for well-deformed Sm, Dy, Gd, Er,
Yb, and Hf isotopes.

One can observe some general features for the distri-
bution functions. The proton distribution function Sπ re-
mains almost constant as a function of neutron number
for most elements. Exceptions to this behavior occur only,
e.g. in 174Hf, due to a variation of the quadrupole defor-
mation causing variations in the occupation of quasiparti-
cle states. For the neutron distribution function Sν there
are significant variations as a function of neutron number
due to changes of the Fermi energy as one moves along an
isotopic chain. Therefore, the development of the neutron
distribution function Sν is of prime interest.

Another remarkable feature is the strong correlation in
most nuclei between Sν and fν , the fraction of the entire
collective wave function carried by all the neutron states
together. To avoid any misunderstandings it should be
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ν

π

ν

Fig. 7. Same as fig. 6 for Yb (left) and Hf (right) isotopes.

re-emphasized that Sν only takes the distribution among
the neutron states into account. Due to its construction it
is completely independent of the neutron fraction of the
wave function. However, the evaluated data shows that
the process of building up a few dominant neutron basis
states when moving along the isotopic chain is most often
connected with the transfer of importance in the entire
wave function from the proton states to the neutron states.

In the subsequent discussion we will elaborate on the
evolution of the distribution functions Sπ and Sν and the
fractions fν and fπ along the different isotopic chains. We
will also qualitatively relate this behavior to the position
of the individual nuclei within the symmetry triangle of
the IBA.

4 Discussion

In this section we will discuss how the results of our model
calculations relate to the stiffness of a collective potential
(characterized by the quadrupole deformation β and the
asymmetry parameter γ) in the direction of gamma. Be-
fore we discuss the evolution of the above results along
the various isotopic chains, it is necessary to recall the re-
sults of the IBA fits of ref. [4]. We will use the IBA results
as an indicator of the gamma-stiffness and therefore will
first introduce this connection. After discussing the IBA
results we will introduce a new quantity for a quantita-
tive comparison of microscopic and IBA results. Finally,
we will present an empirical relation that connects our
results analytically to the IBA parameters.

4.1 Summary of IBA results

The IBA calculations in ref. [4] show quite different trajec-
tories for Dy, Gd, Er on one side and Yb, Hf on the other
side (see fig. 14 of ref. [4]) within the IBA symmetry tri-
angle. The calculations are based on the ECQF formalism
where the simplified IBA Hamiltonian only consists of the

Table 1. Angle θ = (180◦/π) · (π/3 + (2/
√
7)χ(π/3)) in de-

grees within the IBA symmetry triangle for the well-deformed
Gd, Dy, Er, Yb, and Hf from ref. [4] as a function of neutron
number.

N θ (Gd) θ (Dy) θ (Er) θ (Yb) θ (Hf)

90 10.1 21.5

92 21.0 29.6 32.8 41.0 39.6

94 23.7 37.8 36.0 36.4 36.0

96 36.0 45.9 43.2 33.7 32.8

98 46.4 48.2 45.9 32.3 24.2

100 43.7 28.7a 21.9

102 19.6a 10.1

104 16.5
a
Parameter χ obtained by considering the second excited 0+ state as

the first excited collective 0+ state [4].

d-boson number operator and the quadrupole operator,

H = c ·
[

(1− ζ)n̂d +
ζ

4NB
Q̂ · Q̂

]

= εdn̂d + κQ̂ · Q̂ . (6)

Here NB is the total IBA boson number of the nucleus.
εd and κ are related to ζ and the scaling factor c by εd =
c · (1− ζ) and κ = (c · ζ)/(4NB), respectively.

Here we want to concentrate on the behavior of the
polar angle θ defined as [4]

θ =
π

3
+

2√
7
χ
π

3
. (7)

Table 1 summarizes the angles θ resulting from the IBA
fits in ref. [4].

In order to obtain more direct information on the
gamma-rigidity it is instructive to consider the potential
energy surface in the classical limit of the intrinsic state
formalism [21,22]. The expectation value for the Hamilton
operator is given by

〈Ĥ〉 = εd〈n̂d〉+ κ〈Q̂ · Q̂〉 (8)

with [23]

〈n̂d〉 =
NBβ

2

1 + β2
(9)

and

〈Q̂ · Q̂〉 = NB

1 + β2
(

5 + (1 + χ2)β2
)

+
NB(NB − 1)

(1 + β2)2

(

2

7
χ2β4 − 4

√

2

7
χβ3 cos(3γ) + 4β2

)

. (10)

The stiffness K of the potential V (β, γ) ≡ 〈H〉 in the
γ-direction at its minimum value V (βmin, γmin) is defined
as

K ≡ ∂2V (β, γ)

∂γ2
|βmin,γmin

.
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This yields the following expression which is proportional
to the stiffness:

K = 36

√

2

7
· κ · NB(NB − 1)

(1 + β2min)
2
· χ · β3min. (11)

It was already mentioned that the well-deformed nuclei
which were considered here are axially symmetric in their
ground states and the minimum of the potential energy
surface is always located at γmin = 0◦, which is also the
only possibility within the IBA-1.

The stiffness K is directly proportional to the IBA
parameter χ, which in turn determines the polar an-
gle θ. However, K also depends on the strength κ of
the quadrupole-quadrupole interaction, the boson number
NB , and the equilibrium deformation βmin. This means
that large values of χ alone are not sufficient for gamma-
rigidity.

For given κ/εd or ζ values a value of θ = 0◦ (χ =
−1.32) corresponds to a large gamma-stiffness while θ =
60◦ (χ = 0) corresponds to completely gamma-soft nuclei.
However, the scale is highly non-linear since also nuclei
with θ = 50◦ can still be good axial symmetric rotors
with large but somewhat reduced gamma-stiffness. It is
worthwhile pointing out that an equivalent discussion of
the potential would in principle also be possible within the
geometric collective model (GCM) [24–26], for which an
analogous structural triangle can be defined [27]. Seven-
parameter GCM fits to some of the Gd, Dy, Er, and Yb
isotopes under consideration here also describe the nuclei
as axially symmetric [28].

Let us now turn to the evolution of the angle θ along
the different isotopic chains [4]. After the phase transi-
tion from spherical to deformed shapes in the IBA sym-
metry triangle, which occurs at neutron numbers around
90–92 for the nuclei under consideration, the Gd, Dy, and
Er isotopes tend with growing neutron number towards
large angles θ in the triangle into the direction of O(6)
(θ = 60◦). At the same time the values of ζ increase mono-
tonically for those elements. On the other hand, the Yb
and Hf isotopes approach with increasing neutron number
the U(5)-SU(3) leg of the triangle (θ = 0◦) with almost
constant values of ζ around 0.6–0.7.

Results obtained using eq. (11) show that the neutron-
rich Gd, Dy, and Er isotopes (with large θ angles) have
a less stiff potential with respect to γ than the most
neutron-rich Yb and Hf nuclei. Nevertheless, the neutron-
rich Gd and Dy isotopes are still good axially symmetric
rotors with R4/2 = E(4+1 )/E(2+1 ) > 3.0 although they
are close to the O(6) corner of the triangle with angles
θ of about 50◦. Therefore, it is important to point out
that the stiffness of the potential in γ-direction stays large
for all well-deformed rare-earth nuclei and consequently it
would be wrong to label the neutron-rich Gd and Dy nu-
clei as gamma-soft in the sense of the O(6) nuclei like, e.g.,
196Pt [29].

4.2 Definition of a gamma structure function

Now that we have some idea of the structure of the nuclei
of interest in terms of the gamma-stiffness of the collec-
tive potential, we want to relate this information to the
results of our RPA calculations. Therefore, we define a
new quantity that combines the information contained in
the values of the distribution functions Sπ,ν and the pro-
ton and neutron fractions fπ,ν . For this we introduce the
gamma structure function

Γ = 4 · [fπ · fν · Sπ · Sν ] (12)

that can take on values between 0 and 1.
Figure 8 shows the gamma structure function Γ as a

function of the neutron number for the well-deformed Sm,
Dy, Gd, Er, Yb, and Hf isotopes.

Before we discuss the behavior of Γ for the different
nuclei in the next subsection we would like to motivate
the reason we expect this quantity indeed to correlate to
the gamma-stiffness.

We assume that in the gamma-vibrational state pro-
tons and neutrons oscillate coherently in phase with each
other. It is reasonable to suppose that in nuclei where
protons and neutrons contribute with more or less equal
fractions to the wave function, such oscillations are rela-
tively easy to achieve. In other words, they are at lower
energies as compared to nuclei where the wave function is
dominated by one type of nucleons. In the latter case the
oscillation of the one type of nucleons is strongly damped
through the strong proton-neutron interaction with the
non-participating nucleon type. The excitation of such a
mode would cost more energy and thus the collective po-
tential be more stiff as compared to an equal contribution
of protons and neutrons. This argument motivates that a
quantity to describe the gamma-stiffness should include
the product of fν and fπ, which is maximal for fν = fπ,
indicating a less stiff potential.

In order to motivate the second ingredient of Γ we need
to look back at the IBA results above. The neutron-rich

Γ

Fig. 8. Gamma structure function Γ as a function of neu-
tron number for well-deformed Sm, Gd, Dy, Er, Yb, and Hf
isotopes.



364 The European Physical Journal A

Gd, Dy, and Er nuclei have a relatively small gamma-
rigidity (large θ) and exhibit large values of both Sπ and
Sν . For nuclei with large gamma-rigidity (small θ) either
both distribution functions are rather small, e.g. 17472 Hf102,
or there exists a large imbalance between the two distri-
bution functions, e.g. 174

70 Yb104 and 156
62 Sm94. Guided by

this behavior the gamma structure function should con-
tain the product Sπ · Sν . As a result, large values for Γ ,
which should relate to a less stiff gamma-potential, are ob-
tained if the wave functions for protons and neutrons both
contain a few strongly contributing quasiparticle states.

It is important to point out that throughout our cal-
culations (excluding Sm in which the proton fraction fπ of
the wave function drops dramatically for higher neutron
numbers) the wave functions are never dominated by only
one two-quasiparticle state for protons or neutrons. In or-
der to produce a collective state it seems to be necessary
to have at least a few dominant orbital combinations in
the wave function (typically two for protons and two for
neutrons). Therefore, the extreme case in which the dis-
tribution function Sν and Sπ are equal to one (and Γ ≈ 1)
does not occur in reality.

The definition of Γ thus leads to large values (≈ 0.6)
if only a few neutron and proton states contribute to the
wave function with equal strength. This situation should
correspond to a reduced gamma-stiffness. On the other
hand, small Γ -values should correspond to the largest
gamma-rigidity and are the result of an imbalance be-
tween protons and neutrons in the wave function or of an
equal and small contribution of many quasiparticle states
to the collective wave function. It is interesting to note
that one obtains also a rather large value of Γ ≈ 0.5 for
the gamma-soft nucleus 196Pt, consistent with our expec-
tations despite the fact that the validity of our approxi-
mations is somewhat limited for transitional nuclei, such
as W, Os, and Pt isotopes.

4.3 Evolution along isotopic chains

Above we have outlined the ingredients and results of our
own calculations as well as the IBA fits. We now want
to relate the structural evolution of well-deformed rare-
earth nuclei within the IBA symmetry triangle, which
depends partly on the gamma-stiffness of the potential,
to the underlying single-particle structure of the gamma-
vibrational state, which should microscopically be govern-
ing this stiffness. As pointed out above, the angle θ in the
IBA symmetry triangle is directly related to the stiffness
K of the potential in γ-direction. At the same time the
gamma structure function Γ serves as a tool to reason-
ably distinguish and characterize various compositions of
the microscopic wave functions of the gamma-vibrational
state in a quantitative way. The stiffness of a collective po-
tential should be clearly related to this microscopic struc-
ture.

In the succeeding subsections we show in detail for
the isotopic chains of the different elements that there
is a qualitative correlation between the gamma structure
function Γ and the angle θ in the IBA symmetry triangle.

4.4 Sm isotopes

The Sm isotopes were not included in the aforementioned
IBA study of ref. [4]. However, IBA calculations using a
simplified Hamiltonian were performed for those nuclei by
Scholten et al. [30]. In these calculations best fits for the
even-even Sm isotopes with N ≥ 90 were obtained using
a value of χ = −

√
7/2, placing those nuclei on the U(5)-

SU(3) leg of the symmetry triangle with θ = 0. Thus,
the Sm isotopes are the most gamma-rigid well-deformed
nuclei considered in this study.

The distribution of the wave function among the neu-
tron basis states in Sm (see fig. 1) changes its structure
from an equal distribution of the wave function among
many basis states to a dominance of few basis states lead-
ing to an increasing neutron distribution function Sν in
fig. 6.

Overall, the protons show a very low proton distri-
bution function Sπ. At the same time one can observe a
complete dominance of the neutrons in the wave function
of the 2+γ state with fν > 0.9 for neutron numbers above
N = 92. This fact should be reflected in experimental g-
factors and electromagnetic reduced transition probabili-
ties, potentially leading to strongM1 transitions from the
2+γ state to the 2+1 state. Indeed the extreme dominance of
the neutrons is mainly responsible for the gamma-rigidity
of the Sm isotopes and determines the low values of the
gamma structure function Γ in fig. 8.

4.5 Dy, Gd, and Er isotopes

Within the IBA study of ref. [4] the Dy and Gd isotopes
evolve with increasing neutron number from intermedi-
ate angles around 20–30◦ for N = 92, after crossing the
transition from spherical to deformed phase, to larger an-
gles close to 50◦ for N = 98. At the same time the ra-
dial coordinate increases so that the O(6)-SU(3) leg of
the symmetry triangle is reached near to the O(6) cor-
ner of the triangle. Thus, these Dy and Gd nuclei show a
reduced gamma-rigidity with increasing neutron number.
Again, one should keep in mind that these nuclei have a
rotational R4/2-value and thus are still quite far from a
gamma-soft potential.

After the phase transition from spherical to deformed
(N > 90) the Gd and Dy isotopes show the same struc-
tural evolution. The proton distribution function Sπ in
fig. 6 stays on a relatively high level of about 0.7 for all
isotopes, indicating that the quasiproton wave function
is spread over only a few important basis states. Mov-
ing along the isotopic chain to higher neutron numbers
the development among the neutron states changes their
structure in Gd and Dy from an equal distribution of the
wave function among many basis states to a dominance of
few basis states (see figs. 1 and 2) leading to an increasing
neutron distribution function Sν in fig. 6. In this context
the lower value of the gamma structure function Γ for
the N = 96 nucleus 160Gd in fig. 8 might at first glance
be confusing but one has to realize that Γ also incorpo-
rates, beside Sν and Sπ, the wave function fractions fπ
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and fν . The increasing dominance of the neutron states
(fν ≈ 0.75) and hence the decreasing fπ values lead, de-
spite the large Sν and Sπ values, to a local reduction of Γ .
Considering the overall structural evolution it is apparent
from our calculations that the Gd and Dy isotopes become
less gamma-rigid for high neutron numbers.

All of the Er isotopes have nearly constant values of
Sν and Sπ (see fig. 6) which are located at a rather high
level comparable to the Gd and Dy isotopes and the wave
function is, except for 160Er (N = 92), perfectly balanced
between neutrons and protons. Therefore, all of the Er
isotopes considered show a reduced gamma-rigidity with
values for the gamma structure function Γ in fig. 8 even
higher than those of the Gd and Dy isotopes. This result
is consistent with the trajectory for the Er isotopes in the
IBA triangle [4] which lies somewhat above (higher angles)
those trajectories for the Gd and Dy isotopes.

4.6 Yb and Hf isotopes

The Yb and Hf isotopes evolve quite differently in the
IBA calculations [4], starting out at angles near 40◦ for
N = 92 down to angles below 20◦ forN ≥ 102. Please note
that for 170,172Yb we used the χ-values obtained under
the assumption that the second excited 0+ state in these
nuclei is the first excited collective 0+ state (see ref. [4] for
a discussion). At first sight the trend of the two isotopic
chains seems to be quite similar. On closer inspection one
can, however, observe that the Yb isotopes stay at angles
near 30◦ up to N = 100 and θ drops down to 20◦ for
N = 102 while θ drops for the Hf isotopes continuously
from 30◦ at N = 96 to 10◦ at N = 102, after which an
increase in θ is observed to about 17◦.

In the present approach the different behavior of the
proton distribution function Sπ for the Yb and Hf iso-
topes in fig. 7 is the main reason for the different evo-
lution of Γ for these two isotopic chains, that is visible
in fig. 8. While the Yb isotopes start out with a trend
towards lower gamma-rigidity (large Γ -values) and drop
suddenly to lower Γ -values at N = 102, the Hf isotopes
start already at significantly lower Γ -values of about 0.3
and drop to even lower values of about 0.15 at N = 102.
For N = 104 the Γ -value increases again slightly only to
drop back down for N = 106, for which unfortunately no
IBA calculations were performed in [4] due to the large
boson number.

For Yb the proton distribution function Sπ is located
at a level of about 0.7 increasing moderately with the neu-
tron number meanwhile for Hf Sπ is located at low val-
ues of about 0.4. For the Yb isotopes from N = 92 to
N = 100 and for the Hf isotopes from N = 94 to N = 98
the neutron distribution function Sν stays nearly at the
same level of about 0.77. This would imply a more or less
constant behavior (of course at different levels for Yb and
Hf) of the gamma structure function Γ for those isotopes.
However, in Yb the moderately increasing proton distribu-
tion function Sπ leads to a reduced gamma-rigidity com-
parable in its rise with the rise of the Dy isotopes. For
Hf isotopes the gamma structure function Γ reveals even

a slope down towards increased gamma-rigidity which is
caused by the growing inequality in the distribution of the
wave function on proton and neutron states. For the Yb
isotopes from N = 102 to N = 104 the high value of the
neutron distribution function Sν suddenly breaks away
due to a change from a dominance of neutrons in the 2+γ
wave function (fν ≈ 0.5–0.6) to a more dominant pro-
ton fraction (fπ ≈ 0.6–0.7) that goes hand in hand with
a change from a situation with few neutron quasiparticle
states dominating the neutron wave function (Sν ≈ 0.77)
to a more equal contribution of many neutron basis states
to the neutron wave function (Sν ≈ 0.5) for N > 100.
Therefore the isotopes go towards a more gamma-rigid
structure as the gamma structure function clearly shows.
For the Hf isotopes from N = 100 to N = 102 exactly
the same happens to the neutron states with the same
intensity as in Yb leading to a further slope down of the
gamma-structure function. Finally, for N = 104 the Γ -
value increases again towards gamma-softness because of
a sudden upward peak in Sπ characterizing the proton
state distribution. Despite the further growth of Sν for
N = 106, Γ drops down again. This is due partly to the
increasing inequality of the distribution of the wave func-
tion among protons and neutrons and partly due to the
return of Sπ to its usual value for this isotopic chain.

4.7 Empirical relation between Γ and θ

The discussion above shows that it is possible to relate the
evolution of Γ , which is based on the underlying dominant
two-quasiparticle configurations in the 2+γ state, to the
trends observed in the IBA parameters of ref. [4].

However, the situation is not quite as simple, as can
be observed by shifting our attention to the energy ratio

R22 ≡
E(2+γ )

E(2+1 )
.

It is well known that gamma-soft nuclei near theO(6) limit
exhibit R22-values near 2.5, while in the well-deformed
nuclei under investigation here, R22 will take on much
larger values.

Figure 9 shows the calculated values ofK from eq. (11)
against the R22-values for the nuclei under consideration.
For this we used the IBA parameters from ref. [4] as well
as our own IBA fits in the ECQF for the Sm nuclei. It
is obvious that there is a direct correlation between the
stiffness of the potential in the gamma-direction and the
energy of the gamma-vibration relative to the energy of
the first excited 2+ state which sets the energy scale in
the nucleus.

At the same time, the R22-values do not correlate
uniquely with the Γ -values (see fig. 10) or the IBA pa-
rameter χ (not shown). This means that neither θ nor
Γ can be used alone to describe the gamma-stiffness. In
particular, one has to note that the same value for R22

(same K) can be obtained for very different values of Γ .
While this is not completely surprising, since K depends
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Fig. 9. The stiffness K of the potential V (β, γ) ≡ 〈H〉 in the
γ-direction at its minimum value (see eq. (11)) as a function
of R22 for the nuclei under consideration. Both values are cal-
culated using the IBA parameters from ref. [4], except for Sm,
for which parameters were determined in this work.

Γ

Fig. 10. Values of the gamma structure function Γ vs. the

experimental energy ratio R22 ≡
E(2+

γ )

E(2+

1
)
.

on χ, ζ, NB , and βmin, it also points to a more compli-
cated relation between Γ and θ.

While there seems to be no physically intuitive or ob-
vious relation between Γ and the angles θIBA, as defined
in eq. (7), we have empirically found that a simple linear
combination of R22 and Γ allows us to reasonably repro-
duce θIBA.

For an isotope with N neutrons and Z protons we
define the angle

θ̃(Z,N) = Γ (Z,N) +
2.5

R22(Z,N)
, (13)

Fig. 11. Angles θ calculated using eq. (14) against the angles
obtained by the IBA fits [4].

which will however be non-zero also for the Sm isotopes,
which should lie directly on the U(5) to SU(3) leg of the
symmetry triangle and thus have θIBA = 0.

Therefore, we subtract the θ̃-value for the Sm isotope
with the same neutron number from the value for a given
nucleus with proton number Z and neutron number N :

θ = θ̃(Z,N)− θ̃(62, N). (14)

Due to missing experimental data for Sm nuclei with N >
98, no calculations in the framework of our model could be
performed for these isotopes. Therefore, we have used the
Γ -value for the N = 98 isotope 160Sm for all Sm isotopes
with N > 98.

Figure 11 shows the resulting angles θ from eq. (14)
against the angles θIBA obtained from the IBA fits [4]
showing a clear correlation between both values. It is un-
fortunately not clear what the physical meaning of this
correlation is.

4.8 Summary and conclusions

In summary, we have shown a connection between the
structural evolution of well-deformed even-even rare-earth
nuclei within the IBA symmetry triangle and the two-
quasiparticle content of the gamma-vibration in these nu-
clei. The evolution of the two-quasiparticle content of the
gamma-vibration was determined on the basis of a simpli-
fied RPA approach using two-quasiparticle states based on
Nilsson wave functions and including the partial occupa-
tion near the Fermi energy due to pairing. The evolution
within the IBA symmetry triangle can be related to a
function Γ (gamma structure function) that is large if the
gamma-vibration is dominated by a few equally impor-
tant two-quasiparticle orbitals for protons and neutrons.
Γ is small if there is a significant imbalance between pro-
ton and neutron components in the wave function or if
the wave function for protons and neutrons contains only
smaller contributions from many two-quasiparticle states.
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It was also possible to roughly reproduce the angle
θ in the IBA symmetry triangle for a large number of
well-deformed even-even rare-earth nuclei using a single
parameter free expression including Γ and the energy ra-
tio R22 = E(2+γ )/E(2+1 ). While the theoretical basis of
this simple expression remains unclear, it certainly shows
that the IBA parameters used to describe the structural
evolution can be related to the underlying single-particle
structure within the Nilsson model.
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